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a b s t r a c t

We offer a new and practical index test method, the nail penetration test (NPT), to estimate the UCS of

intact rocks, to be used as alternative to the point load test (PLT) or Schmidt rebound hammer test

(SRH). The major tools used in the investigation include a gasnailer with 130 J power and its nails

ranging from 25 to 60 mm in length. The study material covers 65 rock blocks of gypsum, tuff,

ignimbrite, andesite, sandstone, limestone, and marble. For the NPT, five nail shots were performed on

each block sample and the average value was obtained. Two to three uniaxial compression tests were

carried out on each specimen. Ten impacts were applied on rock blocks by using both the L- and N-types

of SRH. Regarding the PLT, either 10 axial or 10 block tests was applied on each rock type.

The average nail penetration depths were correlated with the UCS, IS(50) and rebound number for

both types of the SRH. Also, the measured UCS values were compared with those obtained from the

empirical relationships using the data from the NPT, PLT, and SRH. It was found that the NPT provides

better estimates for UCS than the PLT or SRH. Particularly applicable to weak to very weak rocks, the NPT

is capable of indirectly estimating the UCS of intact rocks up to 100 MPa. The test is proposed for use in

mainly in situ applications.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Uniaxial compressive strength (UCS) is one of the most
frequently used parameters in rock mechanics, and is usually
determined through a uniaxial or unconfined compression test in
a laboratory. While this test method appears to be relatively
simple, it is time-consuming, comparably costly, and requires
carefully prepared rock samples. Additional difficulties exist
concerning the extraction of good quality samples, either from
an outcrop in the field or from a large block in the laboratory.
Weak to very weak rocks may deteriorate during coring and fail to
yield good quality samples. For these reasons, the general tend-
ency to predict the compressive strength of intact rocks is to use
simpler, quicker, and less costly rock tests such as the Schmidt
rebound hammer, point load test, impact strength, and sonic
velocity [1].

The Schmidt rebound hammer (SRH), originally developed to
measure the surface hardness of concrete [2], is a portable,
compact, lightweight, cost effective, and non-destructive device
extensively used in evaluating the compressive strength and
modulus of elasticity. The results of this easily handled, simple,
and rapid method can be converted quickly to most widely used

UCS values. Some common applications of the SRH, mostly
quoted from [3], include the following: determination of rock
weathering [4], assessing joint separation and discontinuities
[5], estimation of underground large-scale in situ strength [6],
mine roof control [7,8], rock abrasivity [9], rock rippability and
rock mass excavability classification [10], abrasion resistance of
rock aggregates [11], penetration rate prediction of drilling
machines [12,13], prediction of roadheader and tunnel boring
machine performance [14], room and pillar design [15,16],
evaluation of rock crushing and blasting, indirect prediction of
rock mass strength, and consideration of failure strength in
intact rocks and rock masses [17]. The SRH’s application area
includes even geomorphological studies. In this regard, [18]
investigated the shore platform and marine terrace elevation
changes and used SRH-based rock strengths in their interpreta-
tions.

Although this testing device offers great advantages because of
its aforementioned properties, there are a number of factors
affecting SRH rebound values. The factors controlling the
consistency and reliability of the method are calibration and
improper functioning of the instrument, surface irregularities of
the rock, weathering state of the tested rock, the existence
of nearby discontinuities, rock surface moisture content, testing
specimen size, spacing between impacts, orientation of the
hammer, the adopted test procedure, type of hammer, and
available impact energy [3]. Williams and Robinson [19] reported
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that even slight weathering is capable of reducing rebound values
significantly [20]. When used on moderate- to highly-weathered
rocks, the rebound impact test causes denting and breaking of
application surfaces [21]. Therefore, the SRH is not applicable to
weak and extremely weak rocks. In this context, Li et al. [12],
reported that weak rocks (UCSo10 MPa) do not yield reliable
rebound values. Also, the SRH is not applicable to non-homo-
geneous rocks such as conglomerate and breccias [22].

The conclusion drawn from the presentation of the background
information about the SRH is that the advantages of the SRH
method such as ease, low cost, portability, and repeatability are
compensated by a series of factors affecting the results of its
consistency and reliability.

The second most commonly used test to predict the UCS
indirectly is the point load test. It was first developed in Imperial
College as an aid to core logging and, after some slight
modifications, has become a convenient tool for rock index tests
[17]. It is both a laboratory and a field test to estimate the
compressive strength of rock materials. The device can handle
regular cores as well as irregular chunks 450 mm in diameter or
the least dimension. The point load strength (Is(50)) is usually
converted to UCS by multiplying a certain coefficient. While this
conversion is not always practicable, it is still considered to be a
quick and inexpensive testing tool.

Fuenkajorn [23] proclaimed that the conventional point load
test (CPL) overestimates the actual UCS, and attributed this to
the curved shape of loading points. Fuenkajorn [23] modified
the loader ends as flat surfaces of various diameters and
concluded that the modified point load test (MPL) better
predicted the actual UCS than the CPL. Bowman and Watters
[24] developed a light and easy-to-operate point load test device
arguing that the existing commercial point load test devices are
both heavy and bulky for transporting to remote field areas. The
most important constraint on the use of the point load test to
estimate the actual UCS is the extremely wide range of the
transformation coefficient. This issue will be addressed later in
the paper.

Aoki and Matsukura [25], using the argument that the
plunger impact energy of the SRH is high and therefore is not
suitable for use on fragile or extremely weathered rock,
proposed the use of a different tool for strength determination
of rocks, the Equotip hardness tester. Although the device was
developed originally for metals, it was applied later to very
soft materials such as fruits. Therefore, it has a very wide range
of application from as low as 0.1 MPa to several 100 MPa [25].
The device was proposed to be used in weathering studies.
However, since it is a relatively new test method in rock
mechanics and there have been no new insights with this
technique, it is not yet certain whether the relationships
between Equotip rebound values and intact rock strength are
correct [26].

In addition to the testing techniques explained above, the
intact rock strength can be estimated with so-called ‘‘simple
means’’ [26]. This procedure involves utilizing hammer blows,
crumbling by hand, etc. Hack and Huisman [26] provided a list of
such simple means and asserted that the estimation of rock stren-
gth using ‘‘simple means’’ is more representative for establishing
the intact rock strength of a rock mass than establishing the intact
rock strength through more elaborate testing.

The aim of this investigation is to propose a new and
practical test method for indirectly determining the strength of
intact rocks. The major tool for the proposed technique is a
gasnailer produced for concrete. A relationship between the nail
penetration depth and the UCS is sought. The Schmidt hammer
and point load tests are also used as aids for the relationship
investigated.

2. Materials

The major tools used in this investigation include a gasnailer,
Trak-It C4s (Fig. 1), and a series of concrete nails ranging from
25 to 60 mm in length. The nailgun operates with a gas cartridge
exerting as high as 130-Joules power on 2.6 mm diameter pointy
nails.

The rock materials used for the investigation include tuff,
ignimbrite, gypsum, sandstone, marble, limestone, and somewhat
weathered andesites collected mainly from the vicinity of Ankara
and Central Turkey. A number of rock outcrops were visited to
collect the rock blocks suitable for the investigation. The intact
rock blocks free of macro-scale discontinuities and two deci-
meters in the smallest dimension were collected and transported
to the laboratory to conduct the associated index tests. Great care
was taken to pick up the rock materials so that all nail-penetration
depths were represented. Very strong rocks with less than a few
mm nail penetration or extremely weak rocks with the 65 mm
length penetration were excluded.

3. Methods

Four testing techniques were employed in this investigation.
They include the uniaxial compression test, Schmidt rebound
hammer test, point load test, and nail penetration test. The details
of each testing method are explained in the following subsections.

3.1. Uniaxial compression test

The ASTM D2938-95 [27] standard was applied to the cores
drilled from the blocks using an NX size diamond bit. The coring
direction was selected perpendicular to any visible bedding
planes, particularly in gypsum. Two to three samples were cored
from each intact rock block and the ends were machined flat. The
length was kept in the interval between 2 and 2.5D. The core was
placed between the platens (one is plain rigid while the other is
spherical) of the loading frame and a stress rate of 1 MPa per

Fig. 1. The concrete nailer and the nail cartridges utilized in the investigation.
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second was applied. To avoid possible disturbance and/or internal
destruction, sample coring was done before the application of the
nail penetration test on intact rock blocks.

3.2. Schmidt hammer rebound test

The most popular two standards chosen for the SRH applica-
tions are the ISRM [28] and ASTM [29]. ISRM recommends the use
of L-type hammer on rocks with UCS ranging from 20 to 150 MPa
and averaging the upper 50% of at least 20 impacts. On the other
hand, ASTM does not specify any hammer type and recommends
applying at least 10 impacts for rocks with UCS ranging from 1 to
100 MPa. According to ASTM, the rebound numbers diverting
more than seven units from the average should be discarded and
the remaining numbers be averaged. Both standards require
impact applications be separated at least one plunger diameter.

The impact energies of L- and N-type Schmidt rebound hammers
are 0.735 and 2.207 N m, respectively. The guidelines regarding the
choice of hammer type in standards are not clear. Sheorey et al. [30]
pointed out that the N-type should be used for rocks with
UCS420 MPa. Gokceoglu and Aksoy [4] indicated that an N-type
hammer produces more accurate and reliable estimates of rock
strength in the range of approximately 20–290 MPa. Del Porto and
Hurlimann [31] reported that the N-type SRH underestimates the
UCS of weak rocks (UCSo20 MPa) and the L-type results in slightly
more precise values for weak rocks. This observation concurs with
that of [30]. Ayday and Goktan [32] found good correlations
between L-type and N-type Schmidt hammer rebound values. An
extensive literature review [20] reveals that both types were
employed to predict the strength of various rock types. They
reported that the N-type performs better since the higher impact
energy represents the intact rock strength more reliably. They also
showed that RN and RL, the rebound numbers of N- and L-type SRH,
respectively, correlate very well (r=0.99).

There has been a great deal of studies relating the UCS, tangent
modulus, and rebound values for various rocks in the form of
empirical relationships. These relationships were developed for
both single rock types and a mixture of rock types. A compre-
hensive list of such relationships can be found in [1,20,33,34]. The
list provided by [20] comprises relationships including and
excluding the density of rocks.

The ASTM standard [35] was employed for Schmidt hammer
applications. In order to avoid the orientation corrections, the
hammer was held downward at a right angle to the rock surface.
At least one plunger diameter distance was kept between impacts.
Both L- and N-type SRH were used to measure the hardness of
intact rock blocks. Ten single impacts were taken with each
hammer on each rock specimen. Since the test surface should be
free from cracks to a depth of at least 6 cm, implying that the
penetration depth of the impact wave may exceed this depth and
the NX size cores do not comply with this requirement [20], no
attempt was made to measure the hardness of cores drilled from
large blocks. Schmidt hammer rebound tests were carried out, as
in the case of extracting uniaxial strength test cores prior to the
application of nail penetration tests.

3.3. Point load test

Broch and Franklin [36] indicated that this test method applies
to hard rock (UCS415 MPa). In this test, the concentrated load is
applied through coaxial, truncated conical platens. The failure load
is used to calculate the point load strength index and to estimate
the UCS. The diametral, axial, and block tests are the choices
depending on the availability of rock cores with sufficient length.

As with the SRH, there are a great deal of published empirical
relationships between point load index and UCS. Kahraman [1]
provided a comprehensive list of such relationships. The general
procedure for the conversion from point load strength to USC is to
determine a coefficient factor using the linear relationship
between the results of two test types. Broch and Franklin [36]
reported that the UCS is about 24 times the point load index.
Bienawski [37] proposed this coefficient to be roughly 23. The
ISRM [38] suggested this value be between 20 and 25. Sonmez and
Osman [39] showed that this number has a wide range from 5 to
55. According to Yilmaz and Sendir [22], this range is even wider,
from 6 to 105. As can be seen from these studies, there is no
unique relationship between the point load strength and the UCS.
This means that, multiplying the point load strength by mostly 24,
the point load strength provides only a crude estimate for the
uniaxial compression of intact rocks.

The axial and block tests were carried out on cores and blocks
drilled and saw-cut from the intact rock blocks. The cores for the
axial tests were prepared so that the height of the sample ranged
between D/3 and D. Likewise, the block samples were cut so that
the height was between W/3 and W, where W is the dimension
representing the width and length, and is equal to or 450 mm.
Ten axial- or block-test specimens were prepared for each rock
type. Some of the rock blocks yielded only several test specimens.
All tests were performed on air-dried samples. Great care was
applied so that the specimen failures conformed to the standards
and the tests that did not comply with this principle were
discarded. Either coring of specimens for the axial test or the
cutting of rectangular samples was done so the visible bedding
planes, if any, remain parallel to the loading surfaces. At the end,
the mean value of point load index (Is(50)) was calculated as the
mean of remaining values after discarding the two highest and
lowest values, having performed the necessary corrections in the
case of rectangular samples.

3.4. Nail penetration test

The literature review revealed that the concrete nailer has
never been applied to rocks. The hypothesis for this investigation
is that there should be a relationship between nail penetration
depth and the intact rock strength. That is, the weaker the rock,
the deeper the nail penetration should be, and vice versa.

The nailer can be held in any position. It should be at nearly a
right angle to the rock surface (Fig. 1). Shots deviating significantly
from perpendicularity may cause chiseling of the rock surface and
errors in true penetration length. When visible discontinuities such
as bedding planes existed, not violating the intact rock principle, the
nailer was positioned perpendicular to the planes of weakness.
The nailer was used both in the field and laboratory. The purpose of
its use in the field was to collect rock blocks representative of all
penetration depths. The laboratory applications were carried out
such that the shot points were sufficiently far from the edges of
blocks to prevent disintegration. Five shots were performed on each
rock block. The clearance between shotpoints was roughly adjusted
so the possible weakness planes (usually not detected visually)
created by nails do not interfere with each other. The length of the
nail outside the rock was measured by a digital caliper (sensitivity is
0.01 mm) and the penetration depth was obtained after deducting
this length from the total length of the nail. The average of five shots
was rounded to the nearest one-tenth.

Regarding the repeatability of the proposed method, a series of
nail penetration tests were conducted on large blocks of andesite
and ignimbrite with machine-flat surfaces. Thirty-nine shots
made on the andesite block gave the mean, minimum, and
maximum values of 21.98, 20.03, and 25.16 mm, respectively. The
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standard deviation was 1.26 mm. Fifty shots on the ignimbrite
block yielded the mean, minimum, and maximum values of 34.24,
32.22, and 35.46 mm, respectively. The standard deviation for this

group of measurements was 0.86 mm. Those two series of tests
demonstrate that the proposed method is repeatable for the gas-
nailer employed in the investigation. We used only one gas-nailer

Table 1
The results of laboratory tests.

No. Rock type Unconfined compression strength Schmidt rebound testa Point load test NPT d

(mm)

sc (MPa)a r (g/cm3) RL RN Typeb Is(50) (MPa)a

1 Gypsum 17.8/18.6/18.2/2 2.3 14.0/20.0/17.0/10 17.0/23.0/20.2/10 B 1.5/2.1/1.9/10 37.5

2 Gypsum 15.9/16.4/16.1/2 2.3 13.0/17.0/14.6/10 15.0/23.0/17.4/10 A 1.1/1.7/1.5/10 42.9

3 Sandstone 16.1/16.8/16.4/2 2.3 18.0/26.0/22.6/10 20.0/30.0/23.9/10 A 1.2/1.6/1.4/10 37.2

4 Sandstone 4.4/5.0/4.7/2 1.6 11.0/13.0/11.0/10 12.0/17.0/13.7/10 A 0.7/0.8/0.7/10 60.0

5 Andesite 43.5/51.4/47.5/2 2.1 38.0/48.0/42.2/10 40.0/48.0/44.3/10 A 4.0/4.6/4.2/10 15.9

6 Andesite 51.0/58.9/54.9/2 2.0 40.0/48.0/44.6/10 42.0/50.0/46.6/10 A 3.5/3.8/3.6/10 19.3

7 Sandstone 25.0/25.8/25.5/2 2.1 20.0/28.0/24.8/10 22.0/32.0/25.6/10 A 1.7/1.9/1.8/10 32.7

8 Sandstone 19.3/23.3/21.3/2 2.1 20.0/28.0/24.0/10 22.0/27.0/26.0/10 A 1.5/1.8/1.7/10 28.7

9 Ignimbrite 15.4/15.5/15.4/2 1.8 18.0/26.0/22.3/10 22.0/29.0/26.0/10 A 1.3/1.7/1.5/10 40.5

10 Ignimbrite 12.6/13.8/13.2/2 1.6 16.0/23.0/19.2/10 19.0/24.0/22.2/10 A 0.9/1.2/1.1/10 37.9

11 Ignimbrite 6.8/9.2/7.9/3 1.5 17.0/24.0/20.1/10 18.0/24.0/22.1/10 A 1.1/1.2/1.1/10 45.3

12 Ignimbrite 9.4/10.0/9.7/2 1.5 18.0/26.0/22.3/10 18.0/26.0/22.7/10 A 1.3/1.4/1.3/10 49.5

13 Ignimbrite 11.2/13.1/12.3/3 1.6 20.0/26.0/22.8/10 22.0/27.0/23.8/10 A 1.0/1.5/1.4/10 41.1

14 Tuff 4.1/4.2/4.1/2 1.5 12.0/16.0713.9/10 14.0/20.0/16.0/10 B 0.5/1.2/0.8/10 47.8

15 Tuff 5.6/5.8/5.7/2 1.5 12.0/16.0/14.4/10 12.0/19.0/15.1/10 B 0.5/0.8/0.7/10 52.4

16 Tuff 17.4/18.5/18.0/2 1.5 21.0/28.0/24.2/10 22.0/29.0/26.0/10 B 1.2/1.4/1.3/10 44.6

17 Andesite 70.5/74.9/72.7/2 2.2 48.0/54.0/51.5/10 45.0/59.0/52.1/10 B 3.4/3.6/3.5/10 12.1

18 Andesite 33.6/38.7/36.2/2 2.0 38.0/44.0/40.2/10 38.0/46.0/43.2/10 B 2.5/3.2/2.9/10 19.3

19 Andesite 32.2/39.9/36.1/3 2.1 46.0/54.0/49.8/10 48.0/56.0/52.1/10 A 2.2/2.2.5/2.4/10 19.9

20 Andesite 59.7/83.5/71.6/2 2.3 42.0/48.0/45.3/10 42.0/50.0/48.2/10 A 3.9/4.8/4.4/10 16.0

21 Andesite 73.9/74.9/74.4/2 2.3 48.0/56.0/52.0/10 50.0/60.0/54.4/10 A 4.0/5.1/4.5/10 15.0

22 Andesite 65.5/79.6/72.6/2 2.3 36.0/49.0/43.6/10 40.0/45.0/43.2/10 A 4.2/4.8/4.6/10 12.5

23 Andesite 18.9/19.3/19.1/2 2.1 24.0/30.0/27.3/10 23.0/38.0/34.5/10 B 1.0/1.5/1.3/10 38.2

24 Gypsum 4.8/7.5/6.4/3 2.3 18.0/22.0/19.4/10 18.0/26.0/22.6/10 A 1.1/1.6/1.3/10 45.2

25 Gypsum 7.1/7.2/7.1/2 2.2 20.0/24.0/22.4/10 20.0/26.0/24.2/10 B 1.3/1.5/1.4/10 42.2

26 Gypsum 14.5/15.6/15.1/2 2.2 20.0/30.0/24.0/10 26.0/34.0/30.6/10 A 1.5/1.6/1.5/10 36.5

27 Gypsum 14.7/14.8/14.8/2 2.2 18.0/24.0/21.3/10 18.0/26.0/22.0/10 B 1.3/1.6/1.5/10 38.3

28 Gypsum 11.9/12.2/12.1/2 2.2 17.0/22.0/19.5/10 17.0/24.0/21.6/10 A 1.3/1.7/1.5/10 43.5

29 Gypsum 26.4/26.6/26.5/2 2.2 19.0/28.0/22.1/10 19.0/28.0/23.3/10 A 1.7/2.0/1.8/10 35.4

30 Ignimbrite 3.3/4.2/3.8/2 1.3 14.0/22.0/17.6/10 16.0/22.0/19.9/10 B 0.5/0.8/0.6/10 55.6

31 Ignimbrite 2.8/3.7/3.3/3 1.3 14.0/18.0/16.0/10 17.0/22.0 /19.5/10 B 0.6/0.8/0.7/10 53.0

32 Ignimbrite 5.0/5.3/5.2/2 1.3 18.0/24.0/20.2/10 20.0/24.0/22.4/10 B 0.7/1.0/0.8/10 52.1

33 Ignimbrite 11.9/12.4/12.2/2 1.8 22.0/32.0/26.4/10 31.0/36.0/32.1/10 B 1.0/1.6/1.3/10 35.4

34 Ignimbrite 8.8/14.9/11.7/3 1.7 19.0/26.0/22.4710 27.0/34.0/29.9/10 B 0.9/1.2/1.1/10 35.6

35 Ignimbrite 9.2/9.3/9.3/2 1.7 20.0/28.0/23.2/10 20.0/31.0/25.5/10 B 0.8/1.2/0.9/10 49.4

36 Ignimbrite 7.9/14.1/11.0/2 1.5 18.0/32.0/24.6/10 19.0/27.0/23.8/10 B 1.1/1.3/1.2/10 33.8

37 Tuff 2.7/3.0/2.9/2 1.2 11.0/13.0/11.9/10 12.0/14.0/13.0/10 B 0.3/0.6/0.5/10 60.0

38 Tuff 4.3/5.2/4.8/3 1.3 16.0/24.0/20.6/10 18.0/24.0/21.1/10 B 1.0/1.5/1.3/10 51.4

39 Ignimbrite 7.9/12.3/10.1/3 1.6 18.0/26.0/21.4/10 18.0/26.0/23.8/10 B 1.6/2.0/1.8/10 33.1

40 Tuff 3.3/3.7/3.5/2 1.2 19.0/24.0/19.7/10 18.0/24.0/21.4/10 B 0.8/1.1/0.9/10 59.0

41 Ignimbrite 11.1/15.3/13.5/3 1.6 22.0/30.0/25.9/10 24.0/35.0/29.5/10 B 1.5/2.1/1.8/10 30.5

42 Ignimbrite 22.8/27.6/25.6/3 1.7 29.0/34.0/27.9/10 25.0/34.0/28.9/10 B 1.9/2.4/2.1/10 30.0

43 Ignimbrite 23.2/23.5/23.4/2 1.7 24.0/28.0/25.6/10 22.0/34.0/27.1/10 B 2.0/2.6/2.2/10 26.4

44 Ignimbrite 14.3/14.7/14.5/3 1.7 24.0/34.0/28.7/10 24.0/30.0/29.4/10 B 1.8/2.0/1.9/10 30.7

45 Sandstone 62.5/79.0/70.7/2 2.5 36.0/46.0/41.2/10 42.0/48.0/44.8/10 A 4.8/5.2/5.0/10 10.7

46 Sandstone 49.3/52.5/50.9/3 2.4 34.0/44.0/39.8/10 38.0/48.0/42.1/10 A 3.4/3.7/3.6/10 15.0

47 Andesite 82.4/86.4/84.4/2 2.2 48.0/45.0/50.1/10 48.0/54.0/51.0/10 A 5.5/6.4/5.9/10 9.4

48 Anhidrite 5.0/6.0/5.5/2 2.1 11.0/12.0/11.5/10 11.0/14.0/12.4/10 B 0.8/079/0.8/10 50.0

49 Andesite 58.8/75.8/67.3/2 2.2 46.0/54.0/49.2/10 52.0/56.0/54.0/10 A 4.6/5.7/5.2/10 12.0

50 Ignimbrite 30.9/37.5/34.4/3 1.7 40.0/46.0/42.9/10 36.0/49.0/43.6/10 A 2.1/2.5/2.3/10 26.3

51 Ignimbrite 43.6/57.9/51.8/3 2.1 40.0/48.0/45.2/10 48.0/54.0/52.7/10 A 3.3/3.5/3.4/10 21.9

52 Ignimbrite 18.3/20.7/18.8/3 1.3 28.0/32.0/30.1/10 28.0/34.0/31.7/10 A 1.2/1.3/1.3/10 36.2

53 Ignimbrite 25.6/31.6/29.2/3 1.7 34.0/40.0/36.7/10 32.0//42.0/38.0/10 A 2.2/2.4/2.3/10 32.6

54 Ignimbrite 24.5/27.6/26.4/3 1.8 32.0/44.0/37.4/10 38.0/48.0/42.8/10 A 2.1/3.0/2.6/10 25.6

55 Ignimbrite 42.9/52.2/47.6/3 1.8 40.0/48.0/45.0/10 48.0/54.0/49.5/10 A 2.7/3.1/2.9/10 23.3

56 Marble 52.4/57.1/55.2/3 2.6 46.0/52.0/48.8/10 49.0/59.0/52.0/10 A 3.1/3.8/3.4/10 12.2

57 Marble 54.7/58.6/56.1/3 2.6 44.0/50.0/46.3/10 48.0/58.0/52.6/10 A 3.1/3.8/3.4/10 13.3

58 Andesite 42.4/52.1/47.3/2 2.2 32.0/36.0/33.6/10 23.0/38.0/34.5/10 A 2.6/3.3/3.0/10 22.2

59 Limestone 71.7/117.9/85.4/3 2.4 50.0/56.0/52.8/10 56.0/60.0/57.5/10 A 4.0/5.2/4.7/10 7.7

60 Limestone 103.3/110.5/106.4/3 2.5 50.0/58.0/53.2/10 54.0/64.0/59.0/10 A 4.6/6.5/5.3/10 6.7

61 Limestone 88.5/97.2/92.9/3 2.4 52.0/58.0/54.4/10 52.0/62.0/58.4/10 A 4.8/7.2/5.9/10 5.9

62 Limestone 47.0/57.5/52.1/3 2.4 38.0/44.0/40.6/10 42.0/50.0/45.3/10 A 3.1/4.2/3.5/10 21.9

63 Limestone 105.2/118.3/111.7/3 2.5 52.0/58.0/55.6/10 56.0/64.0/59.7/10 A 5.3/6.5/5.9/10 5.2

64 Limestone 54.4/57.8/56.1/2 2.4 36.0/48.0/41.6/10 38.0/48.0/44.8/10 A 3.4/4.1/3.6/10 16.9

65 Limestone 40.7/57.5/51.8/3 2.5 36.0/44.0/39.6/10 38.0/46.0/43.5/10 A 3.6/4.4/3.9/10 22.3

a Numbers separated by slash from left to right are the minimum, maximum, mean values and the number of tests done.
b A: axial test; B: block test; d: nail penetration depth.
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in this investigation. Therefore, we have no idea if other gas-
nailers with the same energy level would give similar results. This
should be explored in further studies.

4. Experimental results

The results of all five test methods (i.e., UCS, PLT, SRH-L, SRH-N,
and NPT) are presented in Table 1. In order to determine the best

empirical correlations between the NPT and UCS, Is(50), and rebound
numbers for L- and N-type of hammers, regression curves for diff-
erent test procedures were drawn in Figs. 2–5. The regression coeffi-
cients (R2) between the nail penetration depth (d) and UCS, Is(50), and
rebound numbers for L- and N-type of hammers are found to be
0.92, 0.92, 0.86, and 0.85, respectively. The regression coefficients
between the nail penetration depth and the rebound numbers for
two types of the SRH are in close agreement since the regression
coefficient between RL and RN is very high (R2=0.98) (Fig. 6).

Fig. 7. Comparison between the measured UCS and the UCS computed from the NPT.

Fig. 6. Relationship between RN and RL.

Fig. 5. Relationship between the RN and the nail penetration depth.

Fig. 4. Relationship between the RL and the nail penetration depth.

Fig. 3. Relationship between the Is(50) and the nail penetration depth.

Fig. 2. Relationship between the UCS and the nail penetration depth.
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As can be seen from Fig. 2, the empirical relationship between
the nail penetration depth (d) and the UCS is

sc ¼ 154 expð�0:064dÞ ð1Þ

New graphs were plotted to demonstrate that the NPT is
superior to both the PLT and SRH in estimating the UCS indirectly.
The UCS values measured were compared with the computed UCS
values using Eq. (1) in Fig. 7. It can be asserted that the reliability
of the NPT to estimate the UCS is very high. The Is(50) values
obtained from the PLT were converted to UCS values by
multiplying by 24. A comparison between the measured UCS
values and the computed UCS values from the PLT (Fig. 8) reveals
that the PLT significantly underestimates the UCS. Likewise, the
rebound numbers from the L-type SRH were converted to UCS
values using the empirical relationship by [40]

sc ¼ 9:97 expð0:02RLrÞ ð2Þ

The estimates of UCS using the rebound numbers were
compared to the UCS values measured in Fig. 9. While the UCS
estimates by RL values appear to be better than those of the PLT,
the SRH also underestimates the UCS in general. The overall
conclusion from those comparisons is that the NPT appears to
provide somewhat better estimates for the UCS than either the
PLT or SRH.

5. Conclusions

A new index testing tool is proposed to estimate indirectly the
compressive strength of intact rocks. The major equipment used
to carry out this test has the main advantages of portability,
robustness, quickness, low cost, and non-destructiveness, depend-
ing on the use. The reliability and accuracy of the nail penetration
test to assess the compressive strength indirectly and quantita-
tively seem to be higher than those of the Schmidt rebound
hammer and point load tests. In addition to the substitution with
the SRH and PLT in many applications requiring the determination
of the UCS, the major areas where the proposed equipment would
be considered more helpful include the classification of weath-
ering grades, classification of compressive strength, and the
alternative use in rock mass rating, in place of the uniaxial
compression or the point load tests. The proposed method has
also a potential to be standard index test for intact rocks.

The application of the gasnailer on rocks is a new subject. Some
of the restrictions for the Schmidt rebound hammer such as the
improper functioning of the instrument, surface irregularities of
the rock, weathering state of the tested rock, existence of nearby
discontinuities, rock surface moisture content, test specimen size,
spacing between impacts, orientation of the nailer, type of the
nailer, available impact energy, and application on non-homo-
geneous rocks may also be valid for the nail penetration test.
Those issues need to be addressed further.

Because the point load test involves a very speculative factor as
the conversion coefficient, the nail penetration test is superior to
the point load test in providing the UCS more reliably.

The destructiveness of the proposed testing tool depends upon
whether it is used in the field or in the laboratory. Unless the rock
block is not extracted from its place, the destruction is unlikely
because of the confinement. However, applications on rock blocks
smaller than a certain size (by experience, usually larger than
approximately 1 dm3 in volume) or near the edges would lead to
destruction. The NPT tests we carried out in the laboratory aim to
establish an empirical relationship between the nail penetration
depth and the USC. We propose this tool should be used in mainly
in situ rock strength evaluations.

The results obtained in this investigation and the proposed
testing method along with the classification schemes developed
are valid only for the commercial nailer used in this study. The
other commercially available nailers are expected to give different
results unless they have similar features such as the impact
energy and the type of concrete nails.

The tool employed in the investigation covers a relatively wide
range of uniaxial compression strengths. UCS of very weak to
moderately strong rocks can be estimated with an appreciable
degree of accuracy. While the tool’s ability is restricted to
approximately 100 MPa of USC, further research is recommended
to include the determination of uniaxial strength of strong to very
strong rocks by developing a nailer with the adjustable impact
energy levels.
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